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In the present work, we study the phase transition in the composite materials by using the Langevin equation within the 
framework of the fiber bundle model, subject to the global load-sharing rule in which the load failing elements is shared 
equally among all surviving elements. We show that fracture in the case of global load sharing can be seen as a second-
order phase transition and then we define the order parameter related to this phase transition. Finally we present some 
properties related to failure phenomenon obtained in the critical point like the failure time and the susceptibility. 
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1. Introduction 
 
Fracture of composite materials has received a lot of 

attention in the last years not only for the very important 
technological applications but also for the fundamental 
statistical aspects. Recently the development reached by 
statistical physics has had a perform impact on this 
phenomenon. Different methods and technics have been 
successfully used in studying fracture processes in 
composite materials.  

In the last years, the introduction of models of 
material failure has led to the evidence that fracture can be 
viewed as a kind of critical phenomenon [1–6]. However, 
the question of whether fracture exhibits the properties of 
a first-order or a second-order phase transition remains 
under discussion as well as what is the order parameter 
that determines the type of transition [7].  

In this field, it is important to use models that are able 
to describe the complexity of the failure process, despite 
they should be simple enough to permit analytical insights. 
To this class of models belong the well-known fiber 
bundle models (FBM) which have been the subject of 
intense research during the last years [7-10]. FBM can be 
classified in two groups, static and dynamic. In static 
version of FBM, a set of fibers (elements) is located on a 
supporting lattice and one assigns to its elements a random 
strength threshold sampled from a probability distribution. 
The lattice is loaded and fibers break if their loads exceed 
their threshold values.  

On the other hand, the dynamic FBM simulates failure 
by creep rupture. Usually a constant load is maintained on 
the system and the fibers break by fatigue after a period of 
time. 

One can assume different load transfer rules to mimic 
the range of interactions among the fibers in the set.  

The global load sharing (GLS) rule is the simplest 
theoretical approach one can adopt to make the problem 
analytically tractable, which implies that the load carried 
by failed elements is equally distributed among the 
surviving elements of the system, this model is known as 
democratic fiber bundle, assumes long-range interaction 
among the fibers which makes it a mean-field 
approximation which makes it a mean-field 
approximation. 

In the local load sharing (LLS), the load of failed 
elements is given equally to all the intact neighbors. This 
case assumes short-range interaction among the fibers. 

The rest of the paper is organized as follows. In the 
next section, we describe the FBM model under the GLS 
rule. In section 3, we present and discuss the numerical 
results of the Langevin dynamic simulation. Finally, 
section 4 is devoted to conclusions. 

 
 
2. The model  
 
We simulate the behavior of an heterogeneous 

material subjected to an imposed load F using a FBM. For 
this purpose, we model the material as a system of N 
parallel elastic fibers whose extremities are fixed on a 
rigid support as shown in Fig. 1.  
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Fig. 1. A schematic illustration of the fiber bundle model. 
 

 
This model is equivalent to N fibers in parallel 

subjected to a total  force F. Specifically, we have studied 
the model by using the following rules: 

The applied force produces a local force fi on each 
fiber. F is democratically distributed in the system  
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Recently, in order to simulate the dynamics of fibers, 

we have introduced a model [11] that use the Langevin 
equation [12,13]. This approach is characterized by the use 
of a stochastic differential equation which denotes all the 
ingredients necessary to study the failure in fiber bundle 
model such as thermal noise and frictional force. 

Recently, we have introduced a model that use  
The dynamics of the system is completely determined 

by the Langevin equation:  
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Where Zi, mi and iγ denote the position, mass and viscous 
friction coefficient of the fiber, respectively. This equation 
is a stochastic differential equation in which two force 
terms have been added to Newton's second law to 
approximate the effects of neglected degrees of freedom. 

One term represents a frictional force,

•

ii zγ , the other a 

random force R
r

, which describes here the thermal noise. 
It is usually modelled by a Gaussian white noise with zero 

time average, 
( ) 0=tiR

r

, and autocorrelation function:  
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The angular brackets denote here an average, and kB is 
Boltzmann’s constant. 

We impose that the system is large frictional which 
allows to neglect inertial effects, in this case the system is 
overdamped. 

Initially each fiber has a length 0z .  When we apply a 

load )(min0 ikf cδ= , which δc(i) is a different random 
elongation, taken from an uniform distribution, the fiber 
dilates and his length becomes: δzz 0 += , here δ is the 
fiber elongation. 

If δ exceeds the elongation threshold value δc, the 
fiber is removed and its load is transferred equally to all 
the intact ones. We consider only the case of global load 
sharing (GLS) for the redistribution of load following fiber 
failure. 

We use the periodic boundary conditions which is an 
important technique in a molecular dynamics simulation. 
We make it in simulation in order to remove the effect of 
surface and it consists from a system with a few hundred 
fibers behave like an infinte one. 

In numerical simulation, the cycle of complete 
breakdown of the material is performed many times in 
order to average out the effect of fluctuation.  
 
 

3. Numerical results  
 
The idea that fracture can be seen as a phase transition 

has a long history. For example, the Griffith theory of 
fracture is very similar in spirit to the classical theory of 
nucleation in first order phase transitions. In bubble 
nucleation, a critical droplet will form when the loss in 
free energy due to the bulk forces exceeds the increase in 
the interfacial energy. Similarly fracture occurs if the 
external stress prevail over the resistance at surface of the 
crack. Further analogies come from the scaling behavior 
observed in fracture experiments, such as for the crack 
roughness and the acoustic emission distributions. 

Phase transitions are characterized by changes in the 
internal symmetries of a material as external control 
parameters are varied. Familiar examples are the melting 
of a crystal, or the ferromagnetic transition in a magnet 
[14]. In the first example, we have an abrupt first-order 
phase transition, with latent heat, coexistance and no 
precursors, while the latter is a continuous second-order 
transitions. 

It is clear that at the critical stress value σc, GLS fiber 
bundles show phase transition from partially broken state 
to completely broken state. What is the order of this phase 
transition Zapperi et al. [4,5] considered the fraction of 
unbroken fibers as the order parameter and as it has a 
discontinuity at the critical stress value, they suggested, 
after a mean-field analysis, that it can be seen as a first-
order phase transition similar to spinodal instability [15]. 
The additional reason for identifying the transition at σ = 
σc as a first order spinodal point had been [16] that in the 
presence of short-range interactions, the transition 



Phase transition in fiber bundle model                                                                             1293 
 
becomes discontinuous and first-order like. It is indeed 
hard to identify continuously changing order parameter 
there. We, however, believe that the transition in GLS to 
be second-order. Chronologically, a little later, a new 
parameter was identified [17]: the branching ratio (ζ), 
which is defined as the probability of triggering further 
breaking given an individual failure. The branching ratio 
continuously approaches the value 1 at the critical stress 
(σc) starting from 0 value (for very small σ). Also it shows 
a power law variation: 1 − ζ  (σc − σ)β, with β=1/2. 
Therefore 1 − ζ acts as the order parameter showing a 
continuous transition at the critical point, signaling a 
second-order phase transition.  

Let Nt be the number of fibers that survive after step t, 
where t indicates the number of stress redistribution steps. 

Now we introduce σ = F/N, the applied stress and ρ(t) 
= Nt/N, the surviving fraction of total fibers.  

In Fig. 3 we plot the behavior of the fraction of 
unbroken fibers. We see that the fraction of surviving 
fibers decrease as the time increase tell the total failure. 
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Fig. 2. Behavior of the fraction of surviving fibers for  
system size L=512 and T=315 K. 

 
 

Now we explore in Fig. 3 quantity  which 
represents the difference of the fraction of surviving 
fibers  versus . 

It may be noted that the quantity  
behaves like an order parameter that determines a 
transition from a state of partial failure (σ ≤ σc) to a state 
of total failure  
(σ > σc):  
 

       with β=1/2 
 
Here σc is the critical value of initial applied stress beyond 
which the bundle fails completely. 
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Fig. 3. Behavior of  the difference of the fraction of 
surviving fibers for system size L=512 and T=315 K, the  
                solid line represents the exponent β = ½. 

 
 

Static critical behaviour of the fiber bundle is 
observed in the susceptibility of the surviving fraction of 
fibers. One may define a breakdown susceptibility  by 
the change of ( ) due to an infinitesimal increment of 
the applied stress . We use in the simulation 

 
we see that the susceptibility diverges in the form of a 
power law as the initial applied stress approaches its 
critical value from below: 
 

 with γ=1/2 
 

the susceptibility diverges as the applied stress σ 
approaches the critical value σc  
Such a divergence in χ had already been reported in 
several studies [4 ,5 ]. 
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Fig. 4. The susceptibility of the material for system size L=512 
and T=315 K, the dashed line represents the exponent γ = ½. 

 
 

Near the critical point we explore in Fig. 5 the 
behavior of the relaxation time τ, Our numerical study 
shows that τ has a power law divergence at σc with a 
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universal exponent α =1/2. This power law can be written 
as τ ~ (σc − σ)-α and it's verified previously [18,19]  
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Fig. 5. The relaxation time τ for system size L=512 and  
T=315 K, the solid line represents the exponent α=1/2. 

 

At the critical point (   =  c), a dynamic critical 
behavior has been observed in the relaxation of the failure 
process and we can write 

 
 with  δ=1 
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Fig. 6. The quantity  versus time for 

system size L=512 and T=315 K, the solid line represents 
the exponent δ=1. 

 
As mentioned earlier we considered the difference 

between the fraction of unbroken fibers at any σ and at σc, 
as the order parameter (Ф): it shows a similar continuous 
variation with the applied stress: Ф  (σc−σ) β, with                      
β = 1/2. Apart from this, the susceptibility and relaxation 
time diverge at the critical point following power laws 
having universal exponent values [18,19]. One may 
therefore conclude that at the critical point the GLS fiber 
bundles show a second order phase transition. 

 
 
4. Conclusion 
 
In summary we have studied the phase transition in 

the composite materials by using the Langevin equation, 
then we have shown the critical properties of failure in a 
class of fiber bundle models under an applied stress. The 

model is simple dynamical system that show an 
irreversible phase transition. We have determined the 
dynamic critical properties associated with the phase 
transition. We have defined an order parameter which 
shows that the transition is of second-order. It is supported 
by facts which are characteristic of second-order 
transitions: the susceptibility diverges at the critical point 
and the decay of surviving fraction of fibers with time at 
the critical point follows a power-law. 
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